Empirical spectral processes for locally stationary time series

نویسندگان

  • RAINER DAHLHAUS
  • WOLFGANG POLONIK
چکیده

A time-varying empirical spectral process indexed by classes of functions is defined for locally stationary time series. We derive weak convergence in a function space, and prove a maximal exponential inequality and a Glivenko–Cantelli-type convergence result. The results use conditions based on the metric entropy of the index class. In contrast to related earlier work, no Gaussian assumption is made. As applications, quasi-likelihood estimation, goodness-of-fit testing and inference under model misspecification are discussed. In an extended application, uniform rates of convergence are derived for local Whittle estimates of the parameter curves of locally stationary time series models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Methods for Prediction of Time Series by Wavelets

Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...

متن کامل

On the Causality between Multiple Locally Stationary Processes

When one would like to describe the relations between multivariate time series, the concepts of dependence and causality are of importance. These concepts also appear to be useful when one is describing the properties of an engineering or econometric model. Although the measures of dependence and causality under stationary assumption are well established, empirical studies show that these measu...

متن کامل

Empirical Likelihood Approach for Non-Gaussian Locally Stationary Processes

An application of empirical likelihood method to non-Gaussian locally stationary processes is presented. Based on the central limit theorem for locally stationary processes, we calculate the asymptotic distribution of empirical likelihood ratio statistics. It is shown that empirical likelihood method enables us to make inference on various important indices in time series analysis. Furthermore,...

متن کامل

Estimation for Non-Gaussian Locally Stationary Processes with Empirical Likelihood Method

An application of the empirical likelihood method to non-Gaussian locally stationary processes is presented. Based on the central limit theorem for locally stationary processes, we give the asymptotic distributions of the maximum empirical likelihood estimator and the empirical likelihood ratio statistics, respectively. It is shown that the empirical likelihood method enables us to make inferen...

متن کامل

Spectral Estimation of Stationary Time Series: Recent Developments

Spectral analysis considers the problem of determining (the art of recovering) the spectral content (i.e., the distribution of power over frequency) of a stationary time series from a finite set of measurements, by means of either nonparametric or parametric techniques. This paper introduces the spectral analysis problem, motivates the definition of power spectral density functions, and reviews...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007